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In this paper, it was attempted to predict safety level of merge and diverge areas by

simulating 2880 different types of them with different geometry and traffic characteristics. 

After analyzing trajectory data, safety level was obtained for each merge and diverge area 

by defining an index called “No-Collision Potential Index”. This index depends on the 

number and severity of near-crash events and could be determined by combining four traffic 

conflict techniques using fuzzy inference system. A database containing geometric and 

traffic characteristics as variables and safety level as function was generated after 

determination of safety level for all types of merge and diverge areas. By using this database, 

two models were developed to predict safety level of the two areas, one by artificial neural 

network and another using particle swarm optimization algorithm. Models were tested, 

validated and their errors were checked. The results indicated good accuracy of similarity 

between the results of models in predicting safety level of merge and diverge areas and that 

of simulations. Five merge areas and five diverge areas as case studies were surveyed to 

verify the models. Statistical analysis showed that there was no significant difference 

between means of safety level predicted by models and safety level obtained from case 

studies. 

1. Introduction 

Providing an acceptable Safety Level (SL) of traffic 

facilities is vital due to its consequential effects on 

prevention of fatality and property damage. Freeways have 

always played an important role in road transportation. 

Hence, the SL in freeways has been one of the main concerns 

of researchers. Every freeway should have a continuous 

high-speed flow along with a high SL. Operation of freeways 

has been always affected by operation of merge and diverge 

areas. SL is a common criterion which represents the quality 

of operation in these areas. In this paper, it was attempted to 

develop some models to predict SL of merge and diverge 

areas according to their traffic and geometric characteristics. 

To do this, SL for a specific merge area and a specific diverge 

area with specific traffic and geometric characteristics was 

calculated based on trajectory data using simulation. By 

combining four traffic conflict techniques using Fuzzy 

Inference System (FIS) and finally by defining an index 

called “No-Collision Potential Index” (NCPI), the SL was 

determined. By changing traffic and geometric 

characteristics of the merge and diverge areas, 2160 types of 
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merge areas and 720 types of diverge areas were produced. 

SL was determined for every type using simulation and 

analyzing trajectory data. Thus, a database was generated 

with 2160 rows of information for merge areas which contain 

seven traffic and geometric variables and one function of SL

and 720 rows of information for diverge areas which contain 

six traffic and geometric variables and one function of SL. 

These rows of information were used to develop the models. 

First model was developed by Artificial Neural Network 

(ANN) and second by Particle Swarm Optimization (PSO) 

algorithm that both are illustrated in future sections. After 

checking the accuracy of models, case studies were used to 

verify them. 

2. Literature Review 

Safety aspects of different segments of freeways were 

highly considered in previous researches. Since the operation 

of merge and diverge areas directly affects the performance 

of freeways, several studies were conducted on assessment 

or prediction of safety of these areas and effective factors on 

their safety were investigated. Xie et al. [1] stated that 

parallel-type single-lane exit ramp are safer than taper-type 
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single-lane exit ramp by analyzing 10 Single-lane Right Exit 

Ramp on Freeways of China. Eustace et al. [2] used a four-

year record of crash data (2005–2008) and a statistical 

modeling technique that assumes a negative binomial 

distribution on generalized linear models to develop separate 

models for merging and diverging areas. Their model results 

showed that left-side merging and diverging areas are critical 

elements in crash frequency in the vicinity of ramps on 

freeways. their results also indicated that crashes are about 

7.88 times more likely to occur on merging areas located on 

the left side of the freeway lanes compared to those on the 

right. For diverging areas, about 2.26 times more crashes are 

likely to occur near diverging areas on the left compared to 

those diverging on the right side of the freeway. Chen et al. 

in 2011 [3] studied crash records at a total of 11 left-side and 

63 similar right-side diverge areas in Florida. They found 

that the left-side off-ramp had higher average crash counts, 

crash rate and percentage of severe crashes. Higher number 

of lanes on freeways, higher number of lanes on ramps, and 

speeding related crashes tend to increase the likelihood of 

sustaining severe injuries at freeway merging locations. 

speeding related crashes and angle-type collisions increase 

the likelihood of severe injury crashes at diverging areas [4]. 

Sarvi [5] investigated traffic behavior and characteristics 

during the merging process under congested situations in 

order to design safer and less congested merging points as 

well as to apply more efficient control at these bottleneck 

sections by a three-year extensive study. The results show 

that aggressive and avoidance lane-changing restriction 

strategies decrease potential conflicts between vehicles. Lu 

et al. [6] investigated a three-years crash data from 282 

freeway exit ramps and Three types of crashes consist of 

rear-end, sideswipe, and angle collisions were considered 

during their investigation. multivariate Poisson-lognormal 

model was estimated to jointly evaluate the impacts of 

explanatory variables on different collision risks. They 

reported that rear-end and angle collisions were likely to 

result in more severe outcomes as compared to the sideswipe 

collisions. Kiattikomol et al. [7] developed practical tools for 

assessing safety consequences of freeways in the context of 

long-range urban transportation plans. The researchers used 

the negative-binomial regression modeling approach to 

develop separate models to predict the number of crashes for 

different levels of crash severity for non-interchange 

segments, and interchange segments, respectively. They 

presented crash prediction models, which can be used by 

metropolitan planning organizations planners to evaluate the 

safety impact of alternative freeway networks when 

comparing their costs and benefits in the long-range planning 

context. In order to be in the safe state, the driver of the 

diverging car must know the critical distance (below which 

the way out will be out of his reach) in each lane. This critical 

distance depends on the density of cars, and it follows an 

exponential law [8]. Study on interchanges along Highways 

to quantify the effects of ramp terminal spacing and traffic 

volumes on safety performance was done and statistically 

significant models relating factors such as traffic volumes 

and geometric features to collision frequency were 

developed. It was found that: 

The results of collision modelling using four different 

exposure approaches indicated that the exponential 

relationship between a single exposure term and the collision 

frequency resulted in the best model fit and was hence 

included along with other combinations of explanatory 

variables in all developed models. Increasing the number of 

vehicles that enter and exit the freeway at a specific segment 

would cause an increase in the number of collisions on this 

segment. The general trend of the relationship between the 

length of the speed change lane and the collision frequency 

of the associated segment suggests decreasing number of 

collisions with increasing the length of speed change lane. 

Carrying the full width of the speed change to the gore of the 

following ramp might increase the number of collisions on 

the segment between these two ramps. Therefore, it is 

recommended to provide the speed change lane with a 

tapered portion at the end and beginning of acceleration and 

deceleration lanes, respectively. In cases that warrant an 

increase or decrease in the basic number of lanes to satisfy 

the capacity needs of the freeway, extending the speed 

change lane is not recommended. Alternatively, changing the 

number of lanes should be implemented within the basic 

section and away from the influence of speed change lanes. 

Off- ramps with design criteria that provide relatively high 

speeds for vehicles exiting the freeway would allow safer 

operational conditions compared to off-ramps with relatively 

lower speeds [9]. 

Different techniques for Surrogate Safety Measures 

(SSM) such as Time-To-Collision (TTC), Post Encroachment 

Time (PET), Proportion of Stopping Distance (PSD), Crash 

Potential Index (CPI), Unsafe Density (UD), Max Speed 

(Max S), Relative Speed (Δv), Kinetic Energy (KE), and 

Deceleration Rate to Avoid Collision (DRAC) were defined 

by previous researchers to estimate the danger or risk of 

collision. Four of these techniques have been chosen in this 

paper due to similarity between the objectives. Definitions of 

TTC, DRAC, KE, and Δv in SSM are presented in following 

paragraphs. 

TTC: TTC was defined first by Hayward as the remaining 

collision occurrence time between two vehicles if collision 

course and speed difference maintained constant [10]. When 

TTC is low, there is an imminent danger of collision [11]. 

TTC for rear-end conflicts can be calculated by Eq. (1) [12]. 

𝑇𝑇𝐶𝐹(𝑡) =
𝑋𝐿(𝑡)−𝑋𝐹(𝑡)−𝑙𝐿

𝑉𝐹(𝑡)−𝑉𝐿(𝑡)
             ∀𝑉𝐹(𝑡) > 𝑉𝐿(𝑡)      (1) 

where TTC is the Time-to-collision, X is the vehicle position 

(L: leading and F: following), V is the vehicle speed (L: 

leading and F: following), and l is the vehicle length. 

DRAC: Deceleration rate is a good measure to detect 

dangerous maneuvers. DRAC is the rate at which a vehicle 

must decelerate to avoid a probable collision. For vehicles, 

travelling in the same path DRAC is [13] 

𝐷𝑅𝐴𝐶𝑡 =
(𝑉𝐹(𝑡)−𝑉𝐿(𝑡))

2

2[(𝑋𝐿(𝑡)−𝑋𝐹(𝑡))−𝑙𝑣𝑒ℎ 𝐿]
                                    (2) 

in which Lveh L is the length of leading vehicle and other 

parameters were described previously. 

For angled conflicts the equation changes as follows 

𝐷𝑅𝐴𝐶𝑡 =
∆𝑉𝑖𝑗(𝑡)

2

2 𝐷𝑖(𝑡)
                                                                 (3) 
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where Vij(t) is relative speed of two vehicle engaged in 

conflict and Di(t) is the distance between the current position 

of the vehicle i and point of intersection ahead of two 

vehicles. 

KE: From Newtonian physics, we know that a moving 

vehicle has a kinetic energy as Eq. (4) [2] 

𝐾 =
1

2
𝑚𝑣2                                                               (4) 

where K is kinetic energy, m is mass, and v is speed of 

vehicle. The kinetic energy transferred to the target vehicle 

can be calculated from Eq. (5) 

𝐾𝐸𝑠 =
1

2
. 𝑚𝑠. ∆𝑣𝑠

2                                                  (5) 

in which KEs is the kinetic energy transferred to the target 

vehicle, ms is the mass of target vehicle, and vs is the change 

of the target vehicle speed before and after the collision [14]. 

 Δv: Δv is the relative speed of vehicles involved in the 

conflict as long as collision severity reflector [15]. 

Behbahani and Nadimi [16] presented a new framework 

to calculate the risk of sideswipe collisions instantaneously 

based on SSM. Behbahani et al. [17] also developed a new 

application of TTC for enhancement of road safety 

assessment in their study. Values for both rate of TTC 

variation and the level of hazard associated by TTC have 

been amalgamated as an approximate safety indicator. The 

proposed technique for collision prediction is shown to 

provide a more accurate level of risk assessment with respect 

to car-following scenarios. 

3. Model Development 

By using trajectory data, in this paper, it was attempted 

to develop a model to predict SL of merge and diverge areas 

based on geometry and traffic characteristics of these areas. 

SL was obtained by defining an index called NCPI. NCPI is 

a quantitative index based on the number and severity of 

possible collisions in the study area. The value of NCPI is in 

the range of zero to 100. The higher the value of NCPI, the 

higher the SL. 

Traffic conflict techniques including TTC, DRAC, KE, 

and V were employed to determine NCPI. Number of 

possible collision were predicted using TTC and DRAC and 

severity of these collisions were predicted by KE and V. 

Merge and diverge areas with different geometric and 

traffic characteristics, simulated, and coordinates of vehicles 

at intervals of 0.1 seconds were extracted during simulation. 

It should be noted that any collision in merge or diverge 

areas could be a rear-end collision or occurs at an angle of β. 

Thus, analysis should be done with respect to angled 

collisions. In a special case which the angle of collision is 

zero, it will be a rear-end collision. Collision of two vehicles 

at an angle of β is described in Figure 1. 

 

 
Figure 1. Collision of two vehicles at an angle of β 

 

In this paper, it was assumed that the movement of 

vehicles is linear and with a constant acceleration or 

deceleration. So, the coordinates of intersection ahead of 

two vehicles i and j could be computed. Acceleration or 

deceleration rate and speed of vehicles could be determined 

using these assumptions. It is necessary to check whether 

the coordinates of intersection ahead of two vehicles is 

within the limits of merge or diverge area or not. By 

assuming no changes in the conditions, it can be concluded 

that two vehicles i and j will never collide with each other 

if the coordinates is outside of the limits of study area. 

The distance between the position of each vehicle to the 

intersection ahead and the time required to reach this point 

can be obtained as follows. Here, it was assumed that 

vehicle i reach the point of intersection before vehicle j. 

 

𝐿𝑖𝑗 = [(𝑥𝑐 − 𝑥𝑖1)
2 + (𝑦𝑐 − 𝑦𝑖1)

2]0.5                      (6) 

𝐿𝑖𝑗 = 0.5𝑎𝑖   𝑇𝑖
2 + 𝑉𝑖  𝑇𝑖     ⟹   𝑇𝑖 = [(

𝑎𝑖
2

4
+ 2𝑎𝑖𝐿𝑖𝑗)

0.5

− 𝑉𝑖] /𝑎𝑖    (7) 

𝐿𝑗𝑖 = [(𝑥𝑐 − 𝑥𝑗1)
2 + (𝑦𝑐 − 𝑦𝑗1)

2]
0.5

− 𝐿𝑉𝑒ℎ 𝑖  𝑐𝑜𝑠 𝛽           (8) 

𝐿𝑗𝑖 = 0.5𝑎𝑗𝑇𝑗
2 + 𝑉𝑗𝑇𝑗     ⟹   𝑇𝑗 = [(

𝑎𝑗
2

4
+ 2𝑎𝑗𝐿𝑗𝑖)

0.5

− 𝑉𝑗] /𝑎𝑗      (9) 

 

In which Lij and Lji are the distance between the position of 

vehicles i and j to the intersection ahead. xc and yc are the 

coordinates of intersection ahead. xi1 and yi1 are the 

coordinates of vehicle i and xj1 and yj1 are the coordinates of 

vehicle j at the time of t1. ai and aj are acceleration or 

deceleration rate of vehicles i and j, and Vi and Vj are speed 

of vehicles i and j at the time of t1, respectively. Ti and Tj 

are the time required to reach the point of intersection for 

vehicles i and j, respectively. LVeh i is the length of vehicle i. 

While the absolute value of the difference of Ti and Tj is 

less than the critical time to collision, there will be a near-

crash event. The value of critical time to collision varies in 

several studies but the value of 5 seconds had the highest 

frequency [18-20]. 

Among different couples of vehicles i and j, the number 

of those that are encountered a near-crash event were 

counted as Eq. (10) 
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𝐶𝑇𝑇𝐶 = 𝐶𝑜𝑢𝑛𝑡𝑖
𝑗
 [|𝑇𝑖 − 𝑇𝑗| < 𝑇𝑇𝐶𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙]                  (10) 

 

in which CTTC is the number of couples of vehicles that are 

encountered a near-crash event. With respect to the angled 

collision of two vehicles i and j, the relative speed of these 

two vehicles at the time of collision could be determined as 

follows in each directions of vehicles i and j. 
 

∆𝑉𝑖𝑗 = 𝑉𝑖 − 𝑉𝑗 𝑐𝑜𝑠 𝛽                                                   (11) 

∆𝑉𝑗𝑖 = 𝑉𝑗 − 𝑉𝑖 𝑐𝑜𝑠 𝛽                                                  (12) 

 

in which β is the angle of collision. Minimum DRAC could 

be also found by Eq.s (13) and (14). 
 

𝐷𝑅𝐴𝐶𝑖𝑗 = 0.5 ∆𝑉𝑖𝑗
2 𝐿𝑖𝑗

−1                                            (13) 

𝐷𝑅𝐴𝐶𝑗𝑖 = 0.5 ∆𝑉𝑗𝑖
2 𝐿𝑗𝑖

−1                                                  (14) 

 

Maximum DRAC for every vehicles was proposed by 

Maurya and Bokare [21]. So, if the value of each of the 

DRACs is more than the maximum DRAC, there will be a 

near-crash event. The DRAC of a couple of vehicles i and j 

is the maximum DRAC of them. The number of cases in 

which a near-crash event takes place, will be counted by 

Eq. (16) 
 

𝐷𝑅𝐴𝐶 = 𝑚𝑎𝑥 {𝐷𝑅𝐴𝐶𝑖𝑗 . 𝐷𝑅𝐴𝐶𝑗𝑖}                                  (15) 

𝐶𝐷𝑅𝐴𝐶 = 𝐶𝑜𝑢𝑛𝑡𝑖
𝑗
 [𝐷𝑅𝐴𝐶 > 𝐷𝑅𝐴𝐶𝑀𝑎𝑥 ]                  (16) 

 

in which CDRAC is the number of cases in which a near-

crash event occurs. The speed of vehicle i at the time of 

collision is calculated by Eq. (17). 

 

𝑉𝑖−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 𝑎𝑖 × 𝑇𝑖 + 𝑉𝑖                                            (17) 
 

Decomposition of speed vectors at the moment of 

collision is shown in Figures 2 and 3. 
 

 

 
Figure 2. Decomposition of speed vectors of vehicl j parallel with and perpendicular to the movement direction of vehicl i. 

 
Figure 3. Decomposition of speed vectors of vehicl i parallel with and perpendicular to the movement direction of vehicl j 

 

So, the relative speed of two vehicles i and j at 

themoment of collision could be determined by Eq. (19). 

∆𝑉⃗⃗⃗⃗  ⃗ = ∆𝑉𝑖−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ∆𝑉𝑖−𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∆𝑉𝑗−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ∆𝑉𝑗−𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

                                                                                                               (18) 

∆𝑉 = |∆𝑉⃗⃗⃗⃗  ⃗| = [|∆𝑉𝑖−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

2
+ |∆𝑉𝑖−𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
2
]
0.5

=

[|∆𝑉𝑗−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

2
+ |∆𝑉𝑗−𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
2
]
0.5

                          (19) 

|∆𝑉𝑖−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| = |𝑉𝑖−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | − |𝑉𝑗−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |  𝑐𝑜𝑠 𝛽     (20) 

|∆𝑉𝑖−𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | = |𝑉𝑗−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |  𝑠𝑖𝑛 𝛽  (21) 

|∆𝑉𝑗−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| = |𝑉𝑗−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | − |𝑉𝑖−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |  𝑐𝑜𝑠 𝛽  (22) 

|∆𝑉𝑗−𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | = |𝑉𝑖−𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |  𝑠𝑖𝑛 𝛽 . (23) 

If the difference of speed of vehicle j before and after 

the collision is equal to the V obtained above, the amount 

of kinetic energy transferred in the collision, will be defined 

as follows. 

𝐾𝐸𝑖𝑗 = 0.5 𝑚𝑗∆𝑉2
 (24) 
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In which mj is the mass of vehicle j.  

Four traffic conflict techniques were used to predict 

number and severity of possible collisions. But the 

probability that a near-crash event becomes a real collision 

should be determined and considered in model 

development. There are two following probabilities: 

1. The probability that after detection of an event as a 

near-crash event, the event becomes a real collision (It is 

possible that both or one of the drivers prevent(s) collision 

to take place by changing speed, direction, or path). 

2. The probability that severity of collision does not 

change (It is possible that both or one of the drivers engaged 

in a collision reduce(s) their (his) speed to avoid collision if 

there is time. Even if the collision occurs, the collision 

severity will become lower).  

There will be both above probabilities, when there is 

time for reaction of drivers. In the other words, the more 

time to collision, the less probability of taking place the 

collision with certain severity. The Probability Density 

Function (PDF) should be sensitive to minimum reaction 

time of drivers, too. Thus, an exponential PDF was selected 

to satisfy the requirements of the problem which could be 

written as Eq. (25)  

𝑃𝑟𝑖 = 𝜆𝑒−𝜆(0.5  𝑇𝑇𝐶𝑖
2  𝑡𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

−2 )
 (25) 

in which Pri is the probability that a near-crash event with 

certain severity becomes a real collision with that severity, 

treaction is reaction time of drivers and λ is a constant value 

which should be defined based on the problem. When 

avoiding a collision requires changes in speed, path, or 

direction, AASHTO recommends a range of reaction time 

between 10.2 to 11.2 seconds in freeway [22]. Since the 

probability must close to 1.0 when TTC approaches zero 

seconds, the value of λ should be equal to 1.0. Figure 4 

presents variation of probability that a near-crash event 

becomes a real collision against TTC with λ=1 and 

treaction=11.2. 

 

 

 
Figure 4. PDF for a near-crash event becomes a real collision 

Number and severity of collisions in merge and diverge 

areas could be better predicted by applying the above 

probability as Eq.s (26) to (29) 

 

𝑁𝑇𝑇𝐶 = 𝐶𝑇𝑇𝐶
−1 × ∑ 𝑃𝑟𝑖

𝐶𝑇𝑇𝐶
𝑖=1 𝐶𝑇𝑇𝐶 𝑖                 (26) 

𝑁𝐷𝑅𝐴𝐶 = 𝐶𝐷𝑅𝐴𝐶
−1 × ∑ 𝑃𝑟𝑖

𝐶𝐷𝑅𝐴𝐶
𝑖=1 𝐶𝐷𝑅𝐴𝐶 𝑖                 (27) 

𝑆𝐾𝐸 = 𝐶𝑇𝑇𝐶
−1 × ∑ (𝑃𝑟𝑖

𝐶𝑇𝑇𝐶
𝑖=1 × 𝐾𝐸𝑖)                 (28) 

𝑆∆𝑉 = 𝐶𝑇𝑇𝐶
−1 × ∑ (𝑃𝑟𝑖

𝐶𝑇𝑇𝐶
𝑖=1 × ∆𝑉𝑖)                 (29) 

 

in which NTTC is predicted number of collisions by TTC 

technique, NDRAC is predicted number of collisions by 

DRAC technique, SKE is predicted collisions severity by KE 

technique, and SV is predicted collisions severity by V 

technique. But the results of predicted number of collisions 

using TTC and DRAC techniques were different and the 

results of predicted severity of collisions using KE 

technique were not the same as those by V technique, as 

well. But all results are considerable and could be correct. 

So, all the results from four techniques should be considered 

together to define NCPI. In the other words, NCPI is a 

function of the results of four mentioned techniques as four 

variables as Eq. (30). 

 

𝑁𝐶𝑃𝐼 = 𝐹(𝑁𝑇𝑇𝐶  . 𝑁𝐷𝑅𝐴𝐶  . 𝑆𝐾𝐸  . 𝑆∆𝑉)                 (30) 

 

Determining function of NCPI was defined using Fuzzy 

Inference System (FIS). In this way, the quantitative results 

of four techniques were changed into qualitative results 

using fuzzification. For this purpose, the quantitative value 

of each variable was automatically placed in three 

qualitative group of low, medium, and high after 

fuzzification.  

The rules of FIS between NCPI and its variables were 

set and therefore NCPI would be obtained in qualitative 

form in five group of very low, low, medium, high, and very 

high. Table 1 describes the applied rules of FIS. 
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Table 1. The rules of FIS 

Rule NO. 

Variables   Function 

SV
   -1 SKE

   -1 Nttc
   -1 Ndrac

   -1  NCPI 

1 Low Low Low Low   Very Low 

2 Low Low Low Medium   Very Low 

3 Low Low Low High   Low 

4 Low Low Medium Low   Very Low 

5 Low Low Medium Medium   Low 

6 Low Low Medium High   Medium 

7 Low Low High Low   Low 

8 Low Low High Medium   Medium 

9 Low Low High High   High 

10 Low Medium Low Low   Very Low 

11 Low Medium Low Medium   Low 

12 Low Medium Low High   Medium 

13 Low Medium Medium Low   Low 

14 Low Medium Medium Medium   Medium 

15 Low Medium Medium High   Medium 

16 Low Medium High Low   Medium 

17 Low Medium High Medium   Medium 

18 Low Medium High High   High 

19 Low High Low Low   Low 

20 Low High Low Medium   Medium 

21 Low High Low High   Medium 

22 Low High Medium Low   Medium 

23 Low High Medium Medium   Medium 

24 Low High Medium High   High 

25 Low High High Low   Medium 

26 Low High High Medium   High 

27 Low High High High   Very High 

28 Medium Low Low Low   Very Low 

29 Medium Low Low Medium   Low 

30 Medium Low Low High   Low 

31 Medium Low Medium Low   Low 

32 Medium Low Medium Medium   Low 

33 Medium Low Medium High   Medium 

34 Medium Low High Low   Low 

35 Medium Low High Medium   Medium 

36 Medium Low High High   High 

37 Medium Medium Low Low   Low 

38 Medium Medium Low Medium   Low 

39 Medium Medium Low High   Medium 

40 Medium Medium Medium Low   Low 

41 Medium Medium Medium Medium   Medium 

42 Medium Medium Medium High   High 

43 Medium Medium High Low   Medium 

44 Medium Medium High Medium   High 

45 Medium Medium High High   Very High 

46 Medium High Low Low   Low 

47 Medium High Low Medium   Medium 

48 Medium High Low High   High 

49 Medium High Medium Low   Medium 

50 Medium High Medium Medium   High 

51 Medium High Medium High   High 

52 Medium High High Low   High 

53 Medium High High Medium   High 

54 Medium High High High   Very High 

55 High Low Low Low   Very Low 

56 High Low Low Medium   Low 

57 High Low Low High   Medium 

58 High Low Medium Low   Low 

59 High Low Medium Medium   Medium 

60 High Low Medium High   High 

61 High Low High Low   Medium 

62 High Low High Medium   High 

63 High Low High High   High 

64 High Medium Low Low   Low 
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Rule NO. 

Variables   Function 

SV
   -1 SKE

   -1 Nttc
   -1 Ndrac

   -1  NCPI 

65 High Medium Low Medium   Medium 

66 High Medium Low High   Medium 

67 High Medium Medium Low   Medium 

68 High Medium Medium Medium   Medium 

69 High Medium Medium High   High 

70 High Medium High Low   Medium 

71 High Medium High Medium   High 

72 High Medium High High   Very High 

73 High High Low Low   Medium 

74 High High Low Medium   Medium 

75 High High Low High   High 

76 High High Medium Low   Medium 

77 High High Medium Medium   High 

78 High High Medium High   Very High 

79 High High High Low   High 

80 High High High Medium   Very High 

81 High High High High   Very High 

Then quantitative value of NCPI could be determined 

using Defuzzification. Default of FIS for determination of 

NCPI are presented in Table 2.  

Figures 5 to 8 show the FIS structure and properties 

separately for merge and diverge areas. 

 

 

Table 2. Default of FIS for determination of NCPI 
Type mamdani 

Inputs/Outputs       [4 1] 

Number of Input MFs [3 3 3 3] 

Number of Output MFs 5 

Number of Rules 81 

And Method min 

Or Method            max 

Imp Method            min 

Aggregate Method max 

Defuzzification Method centroid 
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Figure 5. FIS structure and membership functions for NCPI and variables for merge areas 

 
Figure 6. NCPI against number and severity variables for merge areas 
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Figure 7. FIS structure and membership functions for NCPI and variables for diverge areas 

  
Figure 8. NCPI against number and severity variables for diverge areas 

 

 

0.2

0.3

0.4

0.02
0.04

0.06

0.08
0.1

0.3

0.4

0.5

0.6

0.7

1/SDV1/SKE

N
C

P
I

0.02
0.04

0.06
0.08

0.1
0.12

0.2

0.4

0.6

0.8

1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1/Nttc1/Ndrac

N
C

P
I



 Behbahani et al. - Comput. Res. Prog. Appl. Sci. Eng. Vol. 03(01), 42-61, February 2017 

51 

To recognize the effect of variation in the value of every 

geometric or traffic characteristic on NCPI, simulating 

different kinds of merge and diverge areas with different 

geometry and different traffic characteristic is a good 

strategy which solve the problem. Then SL or NCPI of 

merge and diverge areas could be determined based on 

trajectory data. Geometric and traffic characteristics of 

merge and diverge areas are effective variables in predicting 

NCPI indeed. These variables include length of acceleration 

lane, number of freeway lanes, number of lanes in on-ramp, 

freeway volume, on ramp volume, freeway free flow speed, 

and speed of on ramp for merge areas and length of 

deceleration lane, number of freeway lane, number of off 

ramp lanes, freeway volume, freeway free flow speed, and 

speed of off ramp for diverge areas. Tables 3 and 4 present 

variables description and their used ranged in simulation. 

 

 

Table 3. Variables description and their used ranged in simulation for merge areas 

Variables* LACC VFW NFW VR-ON NR-ON SFW SR-ON 

(m) (Veh/h) # (Veh/h) # (Km/h) (Km/h) 

Range: 100 to 500 750 to 2970 3 to 4 600 to 1600 1 to 2 90 to 120 40 to 60 

*LACC is length of acceleration lane, VFW is freeway volume, NFW is number of freeway lane, VR-ON is on ramp volume, NR-ON is number of on 

ramp lanes, SFW is freeway free flow speed, SR-ON is speed of on ramp 

 

Table 4. Variables description and their used ranged in simulation for diverge areas 

Variables* LDEC NFW NR-OFF VFW SFW SR-OFF 

(m) # # (Veh/h) (Km/h) (Km/h) 

Range: 100 to 500 3 to 4 1 to 2 750 to 2970 90 to 120 40 to 60 

*LDEC is length of deceleration lane, NFW is number of freeway lane, NR-OFF is number of off ramp lanes, VFW is freeway 

volume, SFW is freeway free flow speed, SR-OFF is speed of off ramp 

 
By combining different geometric and traffic 

characteristics of merge and diverge areas, 2160 different 

types of merge area and 720 different type of diverge areas 

were produced and simulated. NCPI of merge and diverge 

areas was calculated by analyzing trajectory data. 2160 

rows of information for merge areas and 720 rows of 

information for diverge areas containing NCPI as function 

and the geometric and traffic characteristics as variables 

were produced after data analysis. 

3.1. ANN 

ANN was built by the rows of information. The 

properties of the ANN were as below: 

Merge Area: 

NO. of layers: 3 

NO. of neurons in each layer: 7 

Train data: 60 % of all data 

Test data: 20 % of all data 

Validation data: Remained data (20 % of all) 

Training function: Trainlm 

Function of hidden layers: Tansig 

Function of output layer: Purelin 

 
Figure 9. ANN for prediction of SL of merge area 

Diverge Area: 

NO. of layers: 3 

NO. of neurons in each layer: 7 

Train data: 60 % of all data 

Test data: 20 % of all data 

Validation data: Remained data (20 % of all) 

Training function: Trainlm 

Function of hidden layers: Tansig 

Function of output layer: Purelin 

 
Figure 10. ANN for prediction of SL of diverge area 

Number of layers, number of neurons, training 

functions, hidden layers, and output layer were determined 

after a lot of try and error attempts to reach minimum Root 

Mean Square Error (RMSE). By using this ANN, SL could 

be predicted in merge and diverge areas when there is 

enough information about the values of geometric and 

traffic characteristics of these areas. 

3.2. PSO 

To develop the models using PSO to predict SL of merge 

and diverge areas, a basic equation should be proposed. 

Constant parameters would be determined based on 
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information rows. The results of NCPI by this equation 

were compared with NCPI from the rows of information. 

The global best results of constant parameters will be 

obtained after several iterations to reach possible minimum 

RMSE. Some equations were proposed and after a lot of try 

and error attempts, Eq. (31) was considered for merge area 

and Eq.s (32) and (33) for diverge areas. 

 

𝑁𝐶𝑃𝐼𝑀 = 𝑏1 × 0.143𝑏2|𝑎1𝑒
𝑎2𝐿𝐴𝐶𝐶 + 𝑎3𝑒

𝑎4𝐿𝐴𝐶𝐶 + 𝑎5𝑉𝐹𝑊
𝑎6 +

𝑎7𝑁𝐹𝑊 + 𝑎8𝑉𝑅−𝑂𝑁
𝑎9 + 𝑎10𝑁𝑅−𝑂𝑁 + 𝑎11𝑒

𝑎12𝑆𝐹𝑊 +

𝑎13𝑒
𝑎14𝑆𝐹𝑊 + 𝑎15𝑆𝑅−𝑂𝑁

𝑎16 + 𝑎17|
𝑏2 + 𝑏3 (31) 

 

𝑁𝐶𝑃𝐼𝐷 = 𝑏1 𝑡𝑎𝑛|𝑏2𝜃 + 𝑏3| + 𝑏4  (32) 

𝜃 = 0.167(𝑎1𝐿𝐷𝐸𝐶
𝑎2 + 𝑎3𝑁𝐹𝑊 + 𝑎4𝑁𝑅−𝑂𝐹𝐹 + 𝑎5𝑉𝐹𝑊

𝑎6 +

𝑎7𝑒
𝑎8𝑆𝐹𝑊 + 𝑎9𝑆𝑅−𝑂𝐹𝐹 + 𝑎10) (33) 

In which NCPIM is SL of merge area, NCPID is SL of 

diverge area, LACC is length of acceleration lane, LDEC is 

length of deceleration lane, NFW is number of on freeway 

lanes, NR-ON is number of on ramp lanes, NR-OFF is 

number of off ramp lanes, VFW is freeway volume, VR-ON 

is on ramp volume, SFW is freeway free flow speed, SR-ON 

is speed of on ramp, SR-OFF is speed of off ramp, and ai 

and bi are constant parameters. 

 

3.3. Case Studies and Models Verification 

Models should be verified by case studies. Survey 

results were compared with models outputs. With respect to 

possible difference between survey results and models 

outputs, it was necessary to determine that this difference 

was because of either data distribution and their random 

properties or a significant difference between the results. 

Statistical analysis shows whether there is significant 

difference between surveyed SL and corresponding SL 

predicted by models or not. Pooled t-test was used due to 

the limited number of samples. Statistical t could be 

calculated by Eq. (34) 

 

𝑡 = (𝜇𝑚 − 𝜇𝑠)𝑆𝑝
−1(𝑛𝑚

−1 + 𝑛𝑠
−1)−0.5 (34) 

𝑠𝑝 = ((𝑛𝑚 − 1)𝜎𝑚
2 + (𝑛𝑠 − 1)𝜎𝑠

2)
0.5

(𝑛𝑚 + 𝑛𝑠 − 2)−0.5 (35) 

in which µm and µs are mean of models population and 

mean of survey population, respectively. nm and σm are 

number of samples and standard deviation of models 

results, respectively and ns and σs are number of samples 

and standard deviation of survey results, respectively. 

Computed t should be compared with the tabulated values 

of t-distribution table. The tabulated values of t-distribution 

table depend on degree of freedom, f, which represents the 

number of independent parts. Degree of freedom is defined 

as Eq. (36) in t-distributions. 

 

𝑓 = 𝑛𝑚 + 𝑛𝑠 − 2 (36) 

Once the statistical t is determined, the tabulated values 

of t-distribution table yield the probability of a t value being 

greater than the computed value. In order to limit the 

probability of a type I error to 0.05, the difference in the 

means will be considered significant only if the probability 

is less than or equal to 0.05, that is, if the calculated t value 

falls in the 5% area of the tail, or in other words, if there is 

less than a five percent chance that such a difference could 

be found in the same population.  

If the probability is greater than 5% (or the computed t 

value is less than the tabulated values of t-distribution table) 

then such a difference in means could be found in the same 

population and the difference would be considered not 

significant. Table 5 shows tabulated values of t-distribution. 

Table 5. t-Distribution table 

df 
p 

0.900 0.950 0.975 0.990 0.995 
1 3.078 6.314 12.706 31.820 63.657 

2 1.886 2.920 4.303 6.965 9.925 

3 1.638 2.353 3.182 4.541 5.841 

4 1.533 2.132 2.776 3.747 4.604 

5 1.476 2.015 2.571 3.365 4.032 

6 1.440 1.943 2.447 3.143 3.707 

7 1.415 1.895 2.365 2.998 3.499 

8 1.397 1.860 2.306 2.897 3.355 

9 1.383 1.833 2.262 2.821 3.250 

10 1.372 1.812 2.228 2.764 3.169 

11 1.363 1.796 2.201 2.718 3.106 

12 1.356 1.782 2.179 2.681 3.055 

13 1.350 1.771 2.160 2.650 3.012 

14 1.345 1.761 2.145 2.625 2.977 

15 1.341 1.753 2.131 2.602 2.947 

16 1.337 1.746 2.120 2.584 2.921 

17 1.333 1.740 2.110 2.567 2.898 

18 1.330 1.734 2.101 2.552 2.878 

19 1.328 1.729 2.093 2.539 2.861 

20 1.325 1.725 2.086 2.528 2.845 

21 1.323 1.721 2.080 2.518 2.831 

22 1.321 1.717 2.074 2.508 2.819 

23 1.319 1.714 2.069 2.500 2.807 

24 1.318 1.711 2.064 2.492 2.797 

25 1.316 1.708 2.060 2.485 2.787 

26 1.315 1.706 2.056 2.479 2.779 

27 1.314 1.703 2.052 2.473 2.771 

28 1.313 1.701 2.048 2.467 2.763 

29 1.311 1.699 2.045 2.462 2.756 

30 1.310 1.697 2.042 2.457 2.750 

31 1.309 1.695 2.040 2.453 2.744 

32 1.309 1.694 2.037 2.449 2.738 

33 1.308 1.692 2.035 2.445 2.733 

34 1.307 1.691 2.032 2.441 2.728 

35 1.306 1.690 2.030 2.438 2.724 

36 1.306 1.688 2.028 2.434 2.719 

37 1.305 1.687 2.026 2.431 2.715 

38 1.304 1.686 2.024 2.429 2.712 

39 1.304 1.685 2.023 2.426 2.708 

40 1.303 1.684 2.021 2.423 2.704 

42 1.302 1.682 2.018 2.418 2.698 

44 1.301 1.680 2.015 2.414 2.692 

46 1.300 1.679 2.013 2.410 2.687 

48 1.299 1.677 2.011 2.407 2.682 

50 1.299 1.676 2.009 2.403 2.678 

60 1.296 1.671 2.000 2.390 2.660 

70 1.294 1.667 1.994 2.381 2.648 

80 1.292 1.664 1.990 2.374 2.639 

90 1.291 1.662 1.987 2.369 2.632 

100 1.290 1.660 1.984 2.364 2.626 

120 1.289 1.658 1.980 2.358 2.617 

150 1.287 1.655 1.976 2.351 2.609 

200 1.286 1.652 1.972 2.345 2.601 

300 1.284 1.650 1.968 2.339 2.592 

500 1.283 1.648 1.965 2.334 2.586 

∞ 1.282 1.645 1.960 2.326 2.576 

4. Results 

Rows of information were generated after simulating 

and analyzing trajectory data. This rows of information 

contained seven traffic and geometric variables and one 

function of NCPI for merge areas and six traffic and 

geometric variables and one function of NCPI for diverge 

areas. ANN was developed by using this rows of 

information. ANN results for merge areas are illustrated in 

Figure 11 to Figure 19 and Table 6. 
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Figure 11. All data comparison of ANN output and SL in rows of information as target for merge area 

 
Figure 12. All data error diagram for merge area 

 
Figure 13. All data error distribution for merge area 

 
Figure 14. Test data comparison of ANN output and SL in rows of information as target for merge area 

 
Figure 15. Test data error diagram for merge area 
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Figure 16. Test data error distribution for merge area 

 
Figure 17. Validation data comparison of ANN output and SL in rows of information as target for merge area 

 
Figure 18. Validation data error diagram for merge area 

 
Figure 19. Validation data error distribution for merge area 

 

Table 6. Accuracy of ANN outputs for all data for merge area 

Standard 

deviation. 
Error mean RMSE 

7.89 -0.191 7.89 

 

ANN results for diverge areas are also presented in 

Figure 20 to Figure 28 and Table 7. Results were 

categorized in three collections of all data, test data, and 

validation data. For each collection, comparison between 

ANN outputs and NCPI in rows of information as target was 

described in first graph. Error diagram and error distribution 

of data of each collection were presented in second and third 

graph, respectively. Standard deviation, error mean, and 

RMSE of every collection are also mentioned in the graphs 

of each collection. 

Standard deviation, error mean, and RMSE of three 

collections reflect a good development of models by ANN. 
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Figure 20. All data comparison of ANN output and SL in rows of information as target for diverge area 

 
Figure 21. All data error diagram for diverge area 

 
Figure 22. All data error distribution for diverge area 

 
Figure 23. Test data comparison of ANN output and SL in rows of information as target for diverge area 

 
Figure 24. Test data error diagram for diverge area 
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Figure 25. Test data error distribution for diverge area 

 
Figure 26. Validation data comparison of ANN output and SL in rows of information as target for diverge area 

 
Figure 27. Validation data error diagram for diverge area 

 
Figure 28. Validation data error distribution for diverge area 

 
Table 7. Accuracy of ANN outputs for all data for diverge area 

Standard 

deviation. 
Error mean RMSE 

1.81 0.148 1.82 

 

Constant parameters of Eq. (31) were also determined 

by using PSO algorithm. Results are represented in Figure 

29 and Table 8 for merge areas. 

 

Table 8. Constant parameters of Eq .(31) for merge area 
a1 a2 a3 a4 a5 a6 a7  MSE RMSE 
0.6 -5.6 0 0.6 7 5.204 -30  

184.245 13.57 

        

a8 a9 a10 a11 a12 a13 a14  
-210 -5.625 46.9 355320000000000 -1.2 69.564 0.302  

        

a15 a16 a17  b1 b2 b3  
1800000 -14 0  0.428 0.0816 2.891  
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Figure 29. PSO iteration for merge area (Best Cost = MSE) 

 

The value of RMSE showed good development of the 

model. Thus, the Eq. (31) could be rewritten as Eq. (37). 

 

𝑁𝐶𝑃𝐼𝑀 = 0.365|0.6 𝑒−5.6 𝐿𝐴𝐶𝐶 + 7 𝑉𝐹𝑊
5.204 − 30 𝑁𝐹𝑊 −

210 𝑉𝑅−𝑂𝑁
−5.625 + 46.9 𝑁𝑅−𝑂𝑁 + 3.55 × 1014 𝑒−1.2𝑆𝐹𝑊 +

69.564 𝑒0.302 𝑆𝐹𝑊 + 1.8 × 106 𝑆𝑅−𝑂𝑁
−14|

0.0816
+ 2.891 (37) 

 

All parameters were described previously. Constant 

parameters of Eq.s (32) and (33) were also determined and 

shown in Figure 30 and Table 9 for diverge areas. 

 

 

 
Figure 30. PSO iteration for diverge area (Best Cost = MSE) 

 

 

Table 9. Constant parameters of Eq.s (32) and (33) for diverge area 
a1 a2 a3 a4 a5 a6 a7  MSE RMSE 

-0.31 -0.32 29.97 15.56 -23.35 0.38 -135.92  285.49 16.90 

          
a8 a9 a10 b1 b2 b3 b4    

-10.01 0.03 -910.00 -18.20 1.23 37.80 25.34    
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The value of RMSE showed good development of the 

model. Thus, the Eq.s (32) and (33) could be rewritten as 

Eq.s (38) and (39). 

 

𝑁𝐶𝑃𝐼𝐷 = −18.2 𝑡𝑎𝑛|1.23 𝜃 + 37.80| + 25.34  (38) 

𝜃 = 0.167(−0.31 𝐿𝐷𝐸𝐶
−0.32 + 29.97 𝑁𝐹𝑊 + 15.56 𝑁𝑅−𝑂𝐹𝐹 −

23.35 𝑉𝐹𝑊
0.38 − 135.92 𝑒−10.01 𝑆𝐹𝑊 + 0.03 𝑆𝑅−𝑂𝐹𝐹 − 910) (39) 

All parameters were described previously. As it was 

mentioned before, case studies were used to verify the 

models. Figure 31 shows studied merge areas and traffic and 

geometric characteristics of them are presented in Table 10. 

 
Figure 31. Case studies of merge areas: (a) Tehran-Qom Freeway S-N: Merge Vahnabad W, (b) Hemmat Freeway W-E: Merge Asharfi N, 

(c) Tehran-Qom Freeway N-S: Merge Vahnabad E, (d) Niayesh Freeway E-W: Merge Chamran S, (e) Tehran-Saveh Freeway W-

E: Merge Shahriar W 

Table 10. Characteristics of studied merge areas  

Location: 
Characteristics 

LACC VFW NFW VR-ON NR-ON SFW SR-ON 
 (m) (veh/h) (-) (veh/h) (-) (km/h) (km/h) 

Hemmat Freeway W-E: MERGE Asharfi N 145 5023 4 1253 2 90 50 

Niayesh Freeway E-W: MERGE Chamran S 118 3794 3 909 2 80 40 

Tehran-Qom Freeway N-S: MERGE Vahnabad E 173 2252 3 169 1 120 60 

Tehran-Qom Freeway S-N: MERGE Vahnabad W 154 1266 3 440 1 120 60 

Tehran-Saveh Freeway W-E:MERGE Shahriar W 225 2667 3 361 2 120 40 
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The values of NCPI were predicted by applying two 

developed models on studied merge areas with 

characteristics presented in Table 10. Results of statistical 

analysis between means of NCPI predicted by both models 

versus NCPI surveyed in case studies are represented in 

Table 11 for merge areas. 

 

 

Table 11. Results of statistical analysis between means of NCPI predicted by both models versus NCPI surveyed for merge areas 

 
Location 

n 

NCPI Statistical 

Pooled t-test ANN Results PSO Results Survey Results 

µm σm µm σm µs σs f 
t 

(t-dist. table) 
Sp-ANN Sp-PSO tANN tPSO 

Hemmat Freeway W-E:  

MERGE Asharfi N 
11 16.3381 2.18 18.85 4.21 17.20 2.12 20 1.725 2.15 3.33 0.94 1.16 

Niayesh Freeway E-W:  

MERGE Chamran S 
14 14.7116 3.09 17.06 5.11 15.59 3.12 26 1.706 3.10 4.23 0.75 0.92 

Tehran-Qom Freeway N-S:  

MERGE Vahnabad E 
25 16.1305 4.48 14.41 5.30 15.73 4.21 48 1.687 4.35 4.79 0.33 0.97 

Tehran-Qom Freeway S-N:  

MERGE Vahnabad W 
19 15.2322 2.28 13.01 3.12 14.53 2.03 36 1.692 2.16 2.64 1.00 1.78 

Tehran-Saveh Freeway W-E:  

MERGE Shahriar W 
18 18.1533 3.41 15.17 4.22 17.24 3.07 34 1.694 3.25 3.69 0.85 1.68 

 

It could be found that there are no significant differences 

between means of NCPI for models population and real 

population in merge areas when almost all computed 

statistical t presented in Table 11 (which are achieved from 

statistical analysis of population of models and studied 

areas) are less than the tabulated values of t-distribution 

table. Figure 32 shows studied diverge areas and traffic and 

geometric characteristics of them are presented in Table 12. 

 

 

 
Figure 32. Case studies of diverge areas: (a) Yadegar Freeway N-S: Diverge Kouhestan E, (b) Tehran-Saveh Freeway E-W: Diverge 

Dehshade W, (c) Tehran-Saveh Freeway E-W: Diverge Robatkarim E, (d) Hakim Freeway W-E: Diverge Sheikh Bahaee S, (e) 

Hemmat Freeway W-E: Diverge YADEGAR S 
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Table 12. Characteristics of studied diverge areas  

Location 
Characteristics 

LDEC NFW NR-OFF VFW SFW SR-OFF 
 (m) (-) (-) (veh/h) (km/h) (km/h) 

Hakim Freeway W-E: DIVERGE Sheikh Bahaee S 172 4 1 3188 80 30 

Hemmat Freeway W-E: DIVERGE Yadegar S 202 4 2 4196 80 60 

Tehran-Saveh Freeway E-W: DIVERGE Dehshade W 215 3 2 4160 120 60 

Tehran-Saveh Freeway E-W: DIVERGE Robatkarim E 180 3 2 1895 120 40 

Yadegar Freeway N-S: DIVERGE Kouhestan E 152 3 1 1930 80 50 

The values of NCPI were predicted by applying two 

developed models on studied diverge areas with 

characteristics presented in Table 12. Results of statistical 

analysis between means of NCPI predicted by both models 

versus NCPI surveyed in case studies are represented in 

Table 13 for diverge areas. 

 

 

Table 13. Results of statistical analysis between means of NCPI predicted by both models versus NCPI surveyed for diverge areas 

 
Location 

n 

NCPI Statistical 

Pooled t-test ANN Results PSO Results Survey Results 

µm σm µm σm µs σs f 
t 

(t-dist. table) 
Sp-ANN Sp-PSO tANN tPSO 

Hakim Freeway W-E:  

DIVERGE Sheikh Bahaee S 
17 1.63936 0.18 1.61 0.20 1.65 0.20 32 1.694 0.19 0.20 0.18 0.66 

Hemmat Freeway W-E:  

DIVERGE Yadegar S 
13 32.3352 6.01 36.52 7.30 33.83 6.76 24 1.711 6.39 7.03 0.60 0.98 

Tehran-Saveh Freeway E-W:  

DIVERGE Dehshade W 
22 49.5555 8.72 57.17 10.86 52.18 9.91 42 1.681 9.34 10.40 0.93 1.59 

Tehran-Saveh Freeway E-W:  

DIVERGE Robatkarim E 
14 5.6069 1.83 4.23 1.44 5.39 1.83 26 1.706 1.83 1.65 0.32 1.86 

Yadegar Freeway N-S:  

DIVERGE Kouhestan E 
9 89.363 14.66 99.00 17.63 92.65 16.50 16 1.746 15.61 17.07 0.45 0.79 

 

It could be found that there are no significant differences 

between means of NCPI for models population and real 

population in diverge areas when almost all computed 

statistical t presented in Table 13 (which are achieved from 

statistical analysis of population of models and studied 

areas) are less than the tabulated values of t-distribution 

table. 

5. Conclusion 

The influence of variations of traffic and geometric 

characteristics of merge and diverge areas on SL of these 

areas were assessed in this paper. A model by ANN and 

another one by PSO algorithm were developed to predict SL 

of each merge and diverge area by defining NCPI. The 

results indicated good accuracy of models in terms of 

compliance with rows of information obtained from 

simulations and also surveyed data of case studies. The 

results also showed that in most cases results of model using 

ANN have more accuracy than the results of model using 

PSO algorithm. However, the advantage of using PSO 

algorithm is that finally, there will be certain relationship 

that can be conveniently used. While the model developed 

by ANN will not work when there is no database. 

It should be noted that in general the proposed models 

will be valid when the geometric and traffic characteristics 

of studied areas are in the range of variables values used in 

model development. Obviously, the more distance between 

the values of these characteristics and the range of 

mentioned variables values, the more reduction in validity 

of models. Another conclusion is that models could be 

developed to predict other traffic or safety criteria of merge 

and diverge areas or other traffic facilities based on their 

traffic and geometric characteristics using ANN and PSO 

algorithm. 
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